

Features

- Operating voltage:2.4-5.5V
- Standby current:4uA/3.0V, 8uA/5V
- Power-On Reset (POR)
- Low Voltage Reset (LVR)
- Key Response Time Normal Mode 48mS Standby Mode 160mS
- CMOS-Direct Output
- AHLB pin selects the output level: Active level- high or Active level- low
- Auto-calibration Function
- Sensitivity adjustment using an external capacitor(1-47nF) on CS pin
- Add a capacitor (0-50pF) to a touch key pin can fine tune the sensitivity for single key
- After power-on have about 0.25S stable-time, during the time do not touch the key .
- Package: SOT23-6(3mm x 3mm PP=0.95mm)

1 General Description

VK3601 is a touch pad detector IC which offers 1 touch key,It can detect human body contact using external touch pads. The high level of device integration enable applications to be implemented with a minimum number of external components.

It has 1 CMOS-Direct Output pin. Special internal circuitry is also employed to ensure excellent power noise rejection to reduce the possibility of false detections, increasing the touch switch application reliability under adverse environmental conditions.

With auto-calibration, low standby current, excellent resistance to voltage fluctuation and other features, this range of touch key devices provide a simple and effective means of implementing 1 touch key + IO operation in a wide variety of applications.

2/10

2 Pinouts and pin description

2.1 VK3601 SOT23-6 Pin Assignment

2.2 VK3601 SOT23-6 Pin Description

Pin No.	Pin name	I/O	Function Description
1	VDD	VDD	Positive power supply
2	VSS	VSS	Negative power supply
3	CS	IN	Capacitance detection, the larger the capacitance the higher the sensitivity(1-47nF)
4	AHLB	IN	built-in pull-up resistor, Selects the output level: 0- >Active level- high 1->Active level- low (default)
5	Q	OUT	Touch key output pin
6	TP	IN	Touch key input pin

3 Functional Description

3.1 Block diagram

3.2 Auto-calibration Function

The re-calibration period is about 64 mS within 4S after power-on. Power on after 4S then it returns to standby mode, then the re-calibration period change to about 1S

3.3 Output mode

CMOS Direct output. AHLB pin selects the output level: 0->Active level- high , 1-> Active level- low (default)

3.4 Operating Mode

There are two operating modes for VK3601, the normal mode and the standby mode. If the key is pressed, the device will be waken up and will then enter the normal mode .If no key press,After 4S, the system will then return to the standby mode,it will be saving power. VDD=5V at standby mode output response time about 132ms, at detective mode output response time about 48 ms.

3.5 Sensitivity Adjustment

The touch PAD size and capacitance of connecting line on PCB can affect the sensitivity. The sensitivity adjustment must according to the practical application on PCB. The VK3601 offers some methods for adjusting the sensitivity outside:

I. Touch PAD Size

Under other conditions are fixed. Using a larger Touch PAD size can increase sensitivity. Otherwise it can decrease sensitivity. But the touch PAD size must use in the effective scope.

II. Panel Thickness

Under other conditions are fixed. Using a thinner panel can increase sensitivity. Otherwise it can decrease sensitivity. But the panel thickness must be below the maximum value.

III. Value of CS

Under other conditions are fixed. CS pin to VSS capacitor Cs can adjust sensitivity, When adding the value of CS will increase sensitivity in the useful range (1nF-47nF).

IV. Capacitor to a touch key pin

Add a capacitor (0-50pF) to a touch key can fine tune the sensitivity for single key, When adding the value of capacitor will decrease sensitivity.

Panel Thickness	(Acrylic or Glass)	CS value (only reference)
<3mm		6.8nF/25V
3-6mm		10nF/25V
6-10mm		22nF/25V

4 Application Circuits

5 Electrical characteristics

5.1 Absolute Maximum Ratings

ltem	Symbol	Ratings	Unit
Power voltage	VDD	-0.3~6.0	V
Input Voltage	VIN	V _{SS} -0.3~V _{DD} +0.3	V
Storage Temperature	Tstg	-50~+125	Ĉ
Operating Temperature	Totg	-40~+85	Ĉ
Human Body Mode	ESD	≥ 4	KV

5.2 DC Characteristics

ltem	Symbol	Min. Typ.	Max.	Unit	Test Conditions (25 ℃)		
item			гур.	MdX.	Unit	VDD	Conditions
Operating voltage	VDD	2.4	3.0	5.5	V	—	—
Operating current	I _{OP}	—	120	130	μA	3.0V	CS=10nF
operating current		—	200	240		5.0V	
Standby surrant	т	—	4	8		3.0V	CS=10nF
Standby current	I _{ST}	—	8	16	μA	5.0V	
Output Sink Current	I _{IL}		8.0		mA	3.0V	V _{OL} =0.5V
	IIL		12.0			5.0V	
Output Source Current	t I _{OL}		-3.5		mA	3.0V	V _{OH} =2.8V
output source current			-5.0			5.0V	V _{OH} =4.5V
Input Low Voltage	V _{IL}			1/3	VDD	VDD	Input Low Voltage
Input High Voltage	V _{IH}	2/3	—	1	VDD	VDD	Input High Voltage
	T _R		45		mS	3.0V	normal mode
Output Response Time			48			5.0V	normal mode
Output response fille			124		m C	3.0V	standby mode
			132		mS	5.0V	standby mode

6 Package Information

6.1 SOT23-6(3mm x 3mm PP=0.95mm):

SYMBOL	MILLIMETER				
STMDUL	MIN	NOM	MAX		
A	1.05	1.10	1.15		
A1	0.03	0.08	0.13		
b	0.35	0.40	0.45		
b1	0.32	0.38	0.42		
с	0.08	0.16	0.20		
c1	0.08	0.10	0.16		
D	2.82	2.92	3.02		
E	2.80 2.90 3		3.00		
E1	1.52 1.62 1.7		1.72		
e	0.95BSC				
h	0.10		0.25		
L	0.40 045		0.50		
L1	0.60REF				

7 Revision history

No.	Version	Date	Modify the content	Check
1	1.0	2018-08-10	Original version	Yes
2	1.1	2020-02-11	Update content	Yes

Disclaimers

Information in this document is believed to be accurate and reliable. However, VinKa does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information. VinKa reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. For the latest information, please visit https://www.szvinka.com Or contact VinKa's staff.

February 2	020
------------	-----