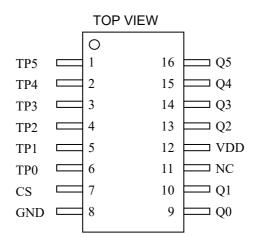


特点

- 工作电压 2.4-5.5V
- 待机电流7uA/3.0V,14uA/5V
- 上电复位功能 (POR)
- 低压复位功能 (LVR)
- 触摸输出响应时间:工作模式 48mS, 待机模式160mS
- 单键1对1直接输出低电平有效
- 防呆功能,有效键最长输出时间: 10S
- 通过CS脚接对地电容调节整体灵敏度(1-47nF)
- 各触摸通道单独接对地小电容微调灵敏度 (0-50pF).
- 上电0.25S内为稳定时间,禁止触摸
- 上电后4S内自校准周期为64mS, 4S无触摸后自校准周期为1S
- 封装 SOP16(150mil)(9.9mm x 3.9mm PP=1.27mm)

1 概述

VK3606D具有6个触摸按键,可用来检测外部触摸按键上人手的触摸动作。该芯片具有较高的集成度,仅需极少的外部组件便可实现触摸按键的检测。

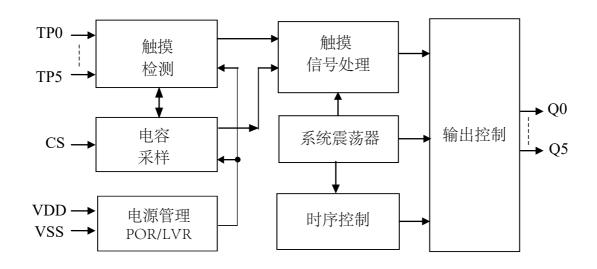

提供了6路1对1直接输出低电平有效。最长输出时间10S。芯片内部采用特殊的集成电路, 具有高电源电压抑制比,可减少按键检测错误的发生,此特性保证在不利环境条件的应用中芯 片仍具有很高的可靠性。

此触摸芯片具有自动校准功能,低待机电流,抗电压波动等特性,为各种6触摸按键+IO输出的应用提供了一种简单而又有效的实现方法。

2 管脚定义

2.1 VK3606D SOP16管脚图

VK3606D-SOP16


2.2 VK3606D SOP16管脚列表

脚位	管脚名称	输入/输出	功能描述			
1	TP5	输入	触摸输入,接对地小电容微调灵敏度 (1-50pf), 不接最灵敏			
2	TP4	输入	触摸输入,接对地小电容微调灵敏度 (1-50pf),不接最灵敏			
3	TP3	输入	触摸输入,接对地小电容微调灵敏度 (1-50pf),不接最灵敏			
4	TP2	输入	触摸输入,接对地小电容微调灵敏度(1-50pf),不接最灵敏			
5	TP1	输入	触摸输入,接对地小电容微调灵敏度 (1-50pf), 不接最灵敏			
6	TP0	输入	触摸输入,接对地小电容微调灵敏度 (1-50pf),不接最灵敏			
7	CS	输入	灵敏度调节,接对地电容(1-47nF)			
8	VSS	电源负	内电源负			
9	Q0	输出	触摸输出			
10	Q1	输出	触摸输出			
11	NC		悬空			
12	VDD	电源正	电源正			
13	Q2	输出	触摸输出			
14	Q3	输出	触摸输出			
15	Q4	输出	触摸输出			
16	Q5	输出	触摸输出			

3 功能说明

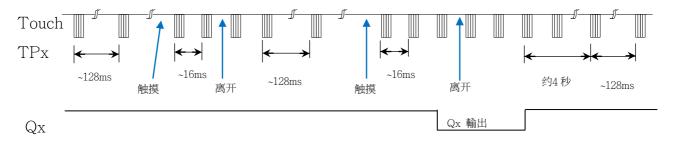
3.1 功能框图

3.2 自动校准

上电后4S内每隔64mS刷新1次参考值。有触摸不刷新,无触摸4S后每隔1S刷新1次参考值。

3.3 防呆功能

为尽量减少如不小心碰触到感应PAD等此类的无意按键检测,芯片内部设置了最长按键持续时间功能。当某个触摸按键按下时,内部定时器开始计时,一旦按键按下的时间过长,超过大约108后,触摸芯片会忽略该被触摸键的状态,重新校准,获取新的基准值,同时输出状态重置为上电初始状态。

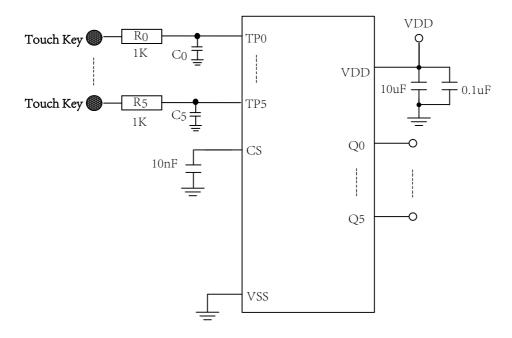

3.4 输出模式

VK3606D 输出为 Q0~Q5,输出1对1低电平有效,支持多键同时触摸。

3.4 工作模式

VK3606D芯片具有两种工作模式, 待机模式和正常模式。键被触摸, 切换到正常模式。无键触摸4S自动进入待机模式以减少功耗。VDD=5V 时Qx 输出响应在待机模式约160 毫秒, 在工作模式约48 毫秒。

3.5 灵敏度调整


VK3606D的灵敏度和触摸PAD大小,外壳厚度,灵敏度电容大小等都有关系,要根据产品的实际应用来调整灵敏度。可以从以下4个方面来调整灵敏度:

- I. 触摸PAD的面积 其它条件不变、触摸面积越大越灵敏、但面积必需在有效面积内。
- II. 外壳的厚度 其它条件不变, 外壳越薄灵敏度越高, 外壳越厚灵敏度越低, 但厚度不能超过限制最大值。
- III. 调整CS脚对地电容值
- CS调整整体灵敏度,越大越灵敏,常用值1-47nF,一些特殊应用也有超过200nF的。 IV.调整触摸脚对地小电容
- 触摸脚对地小电容微调灵敏度,越大灵敏度越低,不接电容最灵敏,常用值1-50pF,

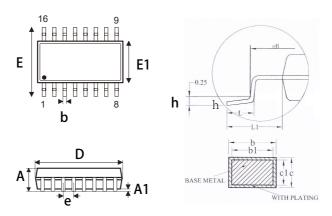
外壳厚度 (亚克力或玻璃)	CS电值(仅供参考)
小于3mm	6.8nF/25V
3-6mm	10nF/25V
6-10mm	22nF/25V

4 参考电路

5 电气特性

5.1 极限参数

特 性	符号	极限值	单 位
电源电压	VDD	-0.3~5.5	V
输入电压	VIN	V _{SS} -0.3~V _{DD} +0.3	V
存贮温度	Tstg	-50∼+125	$^{\circ}$
工作温度	Totg	-40~+85	°C
静电(HBM)	ESD	$\geqq 4$	KV


5.2 直流参数

名称	かロ	最小值	曲刑店	旦十店	单位	测试条件(25℃)	
石 你	符号	取小胆	值 典型值	最大值		VDD	条件
工作电压	VDD	2.4	3.0	5.5	V	_	_
工作电流	I _{OP}		0.3	0.6	μA	3.0V	CS=10nF
工作吧加		_	0.5	1.0		5.0V	
 待机电流	I_{ST}	_	7	14	μA	3.0V	CS=10nF
1年似电流		_	14	28		5.0V	
输出灌电流	I_{IL}	_	8	_	mA	3.0V	V _{OL} =0.5V
柳山准飞/ル		_	12	_		5.0V	
输出源电流	I _{OL}	_	-5	_	mA	3.0V	$V_{OH}=2.8V$
		_	-8	_		5.0V	V _{OH} =4.5V
输入低电压	V_{IL}	_	_	0.2	VDD	VDD	输入低电压
输入高电压	V_{IH}	0.8	_	1	VDD	VDD	输入高电压
	T_R	_	45	_	mS	3.0V	工作模式
 輸出响应时间			48			5.0V	工作模式
推 工 机心 (150		mS	3.0V	待机模式
		_	160	_		5.0V	待机模式

6 封装信息

6.1 SOP16(9.9mm x3.9mm PP=1.27mm):

SYMBOL	MILLIMETER				
STIVIBUL	MIN	NOM	MAX		
Α			1.55		
A1	0.10		0.225		
b	0.39		0.47		
b1	0.38	0.41	0.44		
С	0.20		0.24		
c1	0.19	0.20	0.21		
D	9.80	9.90	10.00		
E	5.80	6.00	6.20		
E1	3.80	3.90	4.00		
е	1.27BSC				
h	0.25		0.50		
L	0.50		0.80		
L1	1.05REF				

7 历史版本

No.	版本	日期	修订内容	检查
1	0.1	2019-08-10	原始版本	Yes
2	1.0	2021-02-11	更新内容	Yes

免责说明

本着为用户提供更好的服务的原则,永嘉微电在本手册中给用户提供准确详细的产品信息。但由于本手册中的内容具有一定的时效性,永嘉微电不保证该手册在任何时段的时效性和适用性。永嘉微电有权对本手册中的内容进行更新,恕不另行通知。为获取最新信息,请访问永嘉微电的官方网站(https://www.szvinka.com)或者与永嘉微电工作人员联系。