

6 KEYS 電容式觸摸按鍵

• 產品描述

提供6個觸摸感應按鍵,一對一直接輸出,輸出為開漏(open drain)型態,適合作AD鍵。對於防水和抗干擾方面有很優異的表現!

• 產品特色

- ◆ 工作電壓範圍: 3.1V 5.5V
- ◆ 工作電流: 3mA@5V
- ◆ 6 個觸摸感應按鍵
- 提供一對一的直接輸出,未按鍵為開漏(open drain)型態輸出,按鍵時為低電平。
- 可以經由調整 CAP 腳的外接電容,調整靈敏度,電容越大靈敏度越高
- 具有防水及水漫成片水珠覆蓋在觸摸按鍵面板,按鍵仍可有效判別
- 內建 LDO 增加電源的抗干擾能力
- 產品應用
 - 各種大小家電,娛樂產品
- 封裝腳位圖

K5	1	16	D 5
K4	2	15	D4
K3	3	14	D3
K2	4	13	D2
K1	5	12	VDD
$\mathbf{K0}$	6	11	D 1
CAP	7	10	D0
GND	8	9	NC

16-SOP

VK3606OM VinTouch TM

• 腳位定義

腳位	腳位名稱	類 型	功能描述		
1	K5 I		觸摸按鍵腳, 串接100-1000歐姆, 能提高抗干擾和提		
1	No	1	高抗靜電能力		
2	2 K4 I		觸摸按鍵腳,串接100-1000歐姆,能提高抗干擾和提		
	K I	1	高抗靜電能力		
3	K3	I	觸摸按鍵腳,串接100-1000歐姆,能提高抗干擾和提		
	NO	1	高抗靜電能力		
4	K2	I	觸摸按鍵腳,串接100-1000歐姆,能提高抗干擾和提		
1	K2	1	高抗靜電能力		
5	K1 I		觸摸按鍵腳,串接100-1000歐姆,能提高抗干擾和提		
	IX I	1	高抗靜電能力		
6	KO	I	觸摸按鍵腳,串接100-1000歐姆,能提高抗干擾和提		
	110	1	高抗靜電能力		
7	CAP		電容須使用 NPO 材質電容或 X7R 材質電容		
	CIN		使用範圍: 6800pF-33000pF,電容越大靈敏度越高		
8	VSS	P	電源負端		
9	NC	-	空接		
10	D0	0	KO狀態直接輸出腳		
11	D1	0	K1狀態直接輸出腳		
12	VDD	Р	電源正端		
13	D2	0	K2狀態直接輸出腳		
14	D3	0	K3狀態直接輸出腳		
15	D4	0	K4狀態直接輸出腳		
16	D5	0	K5狀態直接輸出腳		

I:輸入 0:輸出 P:電源

• AC / DC Characteristics

1 Absolutely max. Ratings

ITEM	SYMBOL	RATING	UNIT
Operating Temperature	Top	-20- +70	$^{\circ}\!\mathbb{C}$
Storage Temperature	Tsto	-50- +125	$^{\circ}\!\mathbb{C}$
Supply Voltage	VDD	5.5	V
Voltage to input terminal	Vin	Vss-0.3 to Vdd+0.3	V

2 D.C. Characteristics

(Condition : Ta= 25 \pm 3 $^{\circ}$ C , RH \leq 65 % , VDD = + 5V , VSS=0V)

	Symbol	Condition	Min.	Тур.	Max.	Unit
Item						
Operating voltage	VDD		3.1	5	5.5	V
Operating current	I_{OPR1}	VDD=5V		3		mA
Input low voltage for	$V_{\rm IL1}$		0		0.3VD	V
input and I/O port					D	
Input high voltage for	V_{IH1}		0.7VD		VDD	V
input and I/O port			D			
Output port source	I_{OH1}	$V_{OH}=0.9VDD$,		4		mA
current		@5V				
Output port sink	I_{OL1}	$V_{OL}=0.1VDD$,		8		mA
current		@5V				

3 A.C. Characteristics

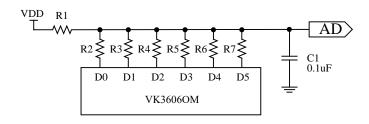
Item	Symbo	Condition	Min.	Тур.	Max.	Unit
	1					
System clock	f_{SYS1}	OSC @5v		4		MHz
Low Voltage Reset	V_{lvr}		2.0	2.2	2.4	V

• 輸出指示

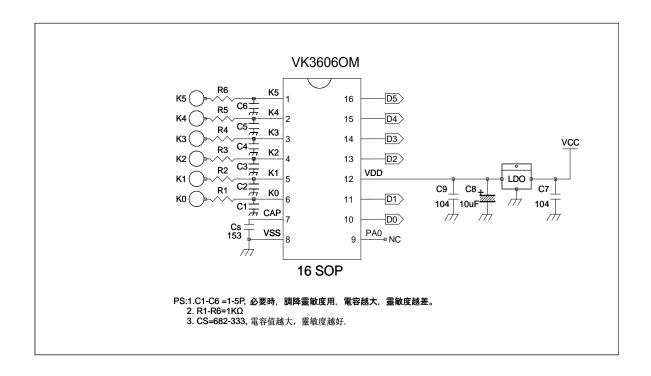
提供 6 keys 電容觸摸按鍵, 輸出是採用一對一直接輸出, 未按鍵時輸出為開漏型態, 按鍵時為低電平輸出。

• 功能描述

- 1 VK3606OM於手指按壓觸摸盤,在60ms內輸出對應按鍵的狀態。
- 2 單鍵優先判斷輸出方式處理,如果 K1 已經承認了,需要等 K1 放開後,其他按鍵才能再被承認,同時間只有一個按鍵狀態會被輸出。
- 3 具有防呆措施, 若是按鍵有效輸出連續超過 10 秒, 就會做復位。
- 4 環境調適功能,可隨環境的溫濕度變化調整參考值,確保按鍵判斷工作正常。
- 5 可分辨水與手指的差異,對水漫與水珠覆蓋按鍵觸摸盤,仍可正確判斷按鍵動作。但水不可於按鍵觸摸盤上形成"水柱",若如此則如同手按鍵一般,會有按鍵承認輸出。
- 6 內建 LDO 及抗電源雜訊的處理程序,對電源漣波的干擾有很好的耐受能力。
- 7 KO~K5 中不使用的按鍵請接地,避免太過靈敏而產生誤動。
- 8 D0~D5 中不使用的輸出請接地,避免浮接會有漏電流的情況。


• 注意事項

- 1. Cs電容和靈敏度的關係:
 - 1. Cs 電容越小,觸摸靈敏度越低
 - 2. Cs 電容越大, 觸摸靈敏度越高
 - 3. Cs 電容值範圍在 6800pF (682) 33000pF(333)之間
 - 4. 由於 Cs 量測的電容,要選擇對溫度變化係數小,容值特性穩定的電容材質,所以須使用 NPO 材質電容或 X7R 材質電容
- 2. 電源的佈線(Layout)方面,首先要以電路區塊劃分,觸摸IC能有獨立的走線到電源正端,若無法獨立的分支走線,則儘量先提供觸摸電路後在連接到其他電路。接地部分也相同,希望能有獨立的分支走線到電源的接地點,也就是採用星形接地,如此避免其他電路的干擾,會對觸摸電路穩定有很大的提升效果。
- 3. 單面板PCB設計,建議使用感應彈簧片作為觸摸盤,以帶盤的彈簧片最佳,觸摸 盤夠大才能獲得最佳的靈敏度。
- 4. 若使用雙面PCB設計,觸摸盤(PAD)可設計為圓形或方形,一般建議12mm x 12mm,與IC的連線應該儘量走在觸摸感應PAD的另外一面。同時連接線應該儘量細,也不要繞遠路。
- 5. PCB 和外殼一定要緊密的貼合,若鬆脫將造成電容介質改變,影響電容的量測, 產生不穩定的現象,建議外殼與PAD之間可以採用非導電膠黏合,例如壓克力膠 3M HBM系列。
- 6. 為提高靈敏度整體的雜散電容要越小越好,觸摸IC接腳與觸摸盤之間的走線區域,在正面與背面都不鋪地,但區域以外到PCB的周圍則希望有地線將觸摸的區域包圍起來,如同圍牆一般,將觸摸盤周圍的電容干擾隔絕,只接受觸摸盤上方的電容變化,地線與區域要距離2mm以上。觸摸盤PAD與PAD之間距離也要保持2mm以上,儘量避免不同PAD的平行引線距離過近,如此能降低觸摸感應PAD對地的寄生電容,有利於產品靈敏度的提高。
- 7. 電容式觸摸感應是將手指視為導體,當手指靠近觸摸盤時會增加對地的路徑使 雜散電容增加,藉此偵測電容的變化,以判斷手指是否有觸摸。觸摸盤與手指 所構成的電容變化與觸摸外殼的厚度成反比,與觸摸盤和手指覆蓋的面積成正 比。

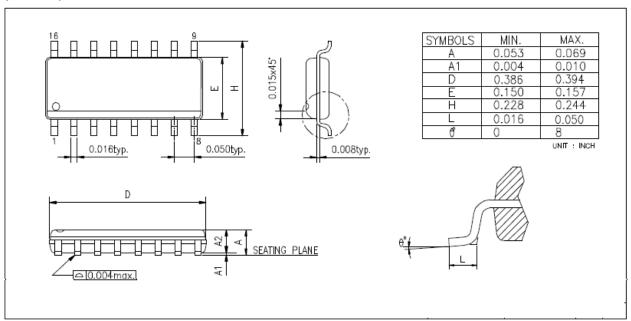

VK3606OM VinTouch TM

- 8. 外殼的材料也會影響靈敏度,不同材質的面板,其介電常數不同,如 玻璃 > 有機玻璃(壓克力) > 塑膠,在相同的厚度下,介電常數越大則手指與觸摸盤間產生的電容越大,量測時待測電容的變化越大越容易承認按鍵,靈敏度就越高。
- 9. 應用於AD KEY時,請於AD的輸入端加入C1/0.1uF電容。

• 應用線路圖

- Cs 外接電容與壓克力厚度關係:
- 以鐵片彈簧鍵,圓型實心直徑 12 MM 為例,壓克力厚度與 CS 電容的關係如下:

壓克力厚度(mm)	CS	靈敏度設定
1	682	30
2	103	30
3	153	30
4	223	30
5	223	30
10	333	30


此表格僅供參考,不同的 PAD 大小, PCB layout 皆會影響。

VK3606OM VinTouch TM

• 封裝說明

(16-SOP)

- 訂購資訊
- 1. VK3606OM
- a. 封裝: 16-SOP

HTTP://WWW.SZVINKA.COM